
UNIFYING DATA STRUCTURES FOR VIRTUAL REALITY APPLICATIONS

Ícaro Lins Leitão da Cunha 1, Ronei Marcos de Moraes 2, Liliane dos Santos Machado 3

1 Ícaro Lins Leitão da Cunha, scientific initiation student financed by CNPq, Department of Informatics, Universidade Federal da Paraíba – UFPB, Cidade
Universitária s/n, João Pessoa, PB - Brazil, ivellius@yahoo.com.br
2 Ronei Marcos de Moraes, Department of Statistics, Universidade Federal da Paraíba – UFPB Cidade Universitária s/n, João Pessoa, PB - Brazil,
ronei@de.ufpb.br
3 Liliane dos Santos Machado, Department of Informatics, Universidade Federal da Paraíba – UFPB, Cidade Universitária s/n, João Pessoa, PB - Brazil,

liliane@di.ufpb.br

Abstract  In the past few years, Virtual Reality Systems
(VRS) have been used as an approach for the development of
effective training systems. The CyberMed is a free software
system that offers libraries for the development of simulation
applications for medical teaching and training based on
VRS. The system includes functionalities as stereoscopic
visualization, haptic interaction, objects deformation and
user evaluation. To share the use of 3D objects in these
functionalities it’ s necessary to create a storage structure
that favors the operations made by them. By this means, the
storage of the information by data structures (DS) based on
corner-tables shows quite adequate due to the fact that it
stores references to the neighboring points of a triangle that
forms the object. The direct access to a triangle’s neighbors
is necessary to guarantee the real-time feature on
deformation and illumination routines.

Index Terms  Corner-table, Data Structure, Unifying
Data, Visualization.

INTRODUCTION

Surgery simulation is an essential tool to acquire experience
and ability because can decrease the time of recovery of
patients and the number of mortalities in surgeries. For its
existence, a realistic simulation system depends on the
quality of its images, the non-existence of delays in the
simulation and the interaction methods offered by the system
[1]. Having a real-time interaction and visualization means
that any action made by the user generates an instantaneous
response by the system, modifying its components and
giving back reactions to the user. By these means, the
complexity of the objects and the events triggered by the
interactions should not affect the system’s performance.

Virtual Reality (VR) is a recent research area that unites
knowledge of many areas such as electronics, computer
science, robotics, physics etc. The objective of VR is to offer
real-time systems that integrate aspects of immersion and
interactivity to simulate realistic environments [2]. For this,
specific equipments are used to stimulate the senses of sight,
hearing, touch and smell [5][6].

CyberMed is a VR system to support medical teaching
and training by user interactions [3]. It allows the exploring

of the human body and the realistic simulation of medical
proceedings in an immersive virtual environment. CyberMed
system is developed under the VirtWall platform [4], a
virtual wall based on public domain tools and low cost
equipments. This feature is important to make the use of
CyberMed economically possible in emergent countries,
such as Brazil. The main features of CyberMed are: three-
dimensional visualization; usage of realistic models; spatial
interaction; interactive deformation; visual sharing; and
supervision and evaluation [3].

This paper presents the development of the DS shared
by the routines of the CyberMed. The main motivation of
this is to generate a DS capable of storing data from
graphical objects and allowing their fast access by the
different routines of the system to guarantee the system’s
real-time feature.

CORNER-TABLE DATA STRUCTURE

A corner-table is a concise data structure for representing
triangular meshes. In it, the concept of corners is used to
represent the association of a triangle to one of it’s vertexes,
in other words, associate a triangle to a opposite border to a
corner [7][8].

0

1
2 3

0

00

1

2

3

0

1, 3, 6 2, 5, 9

4, 8, 107 11

FIGURE. 1
VERTEXES AND FACES FLATTENED TETRAHEDRON.

In the DS, non-negative numbers indexes corners,
vertexes and triangles. Three consecutive corners define
each triangle, and their order defines its construction
orientation. For example, in figure 1 the corners 0, 1 and 2
represent the first triangle (triangle 1), the corners 3, 4 and 5
the second triangle (triangle 2) and so on. As a consequence
to this, a corner c is associated to it’ s triangle of index t by
the formula t = c % 3, where % is an operation that gives the
rest of a division, in this case the rest of the division of c by
3. The corner-table represents the geometry of a surface by
associating each corner c to its geometric vertex index.

Assuming the counter clockwise construction
orientation of the triangles, for each corner c, the next(c) and
before(c) are corners that can be found by the following
equations: prox(c) = (c+1) mod 3 and before(c) = (c+2)
mod 3.

By associating to each corner c its opposite corner O[c]
that shares the same opposite border, the adjacency of
borders of neighboring triangles is represented. Table I
shows the list of data of the object in Figure 1 generated by
corner-table.

TABLE I
LIST OF DATA OF TETRAHEDRON.

Corner Vertex Triangle Opposite
0
1
2
3
4
5
6
7
8
9
10
11

0
1
3
1
2
3
1
0
2
3
2
0

0
0
0
1
1
1
2
2
2
3
3
3

2
2
2
0
0
0
3
3
3
1
1
1

UNIFICATION AND DIRECT ACCESS OF DATA IN
THE CYBERMED

CyberMed is a VR based system that supports applications
for medical teaching and training [3]. Interactive exploration
of the human anatomy and realistic simulation of medical
procedures in an immersive virtual environment are some of
its applications.

The main features of CyberMed are: three-dimensional
visualization of graphical objects; usage of realistic models
generated from 3D reconstruction of medical images; spatial
interaction with touch detection, using tactile devices;
interactive deformation of objects; visual sharing in case of
using the system on a class room, by this the visualization
can be seen by more than one users; and supervision and
evaluation of the user’s actions.

Triangular meshes form the graphical objects used in
CyberMed using triangular faces to define a polyhedral
surface proves to be more convenient than using arbitrary
polygons. This is true because of the simplicity of triangles,

since they offer planar advantages; they are always
polygonal plane curves and have linear coordinates
(barycentric coordinates) naturally associated to them.

Each object used in CyberMed has associated to them a
series of physical properties; these properties are used by the
routines in CyberMed. To make them organized and
accessible to these routines they have to be stored in a DS,
this can make their accesses more fast.

In an interactive simulation on the system, a user can
interact with the environment by changing the position of a
pointing object (using either mouse or haptic device). To this
interaction there is a routine associated to it that verifies if
there is a collision of this object with the other objects of the
3D environment. For this collision test it is necessary to
identify the position of the pointing object in relation to the
objects on the scene. In case a collision occurs, deformation,
touch, visualization and evaluation routines are activated to
make the necessary calculations to give a feedback to the
user interaction. For this happen, much information
regarding the 3D objects in the scene is necessary, this
information can be: references to a triangles neighbor and
elastic coefficients for deformation calculations and return of
tactile force, vertexes and triangles (including neighboring
triangles) normal vectors for illumination calculation.

Figure 2 presents the association of the DS with the
view, deformation, touch and evaluation routines of
CyberMed.

FIGURE. 2

INTEGRATION OF THE SYSTEM’S FUNCTIONS WITH THE DS.

Any delay made in the access to the necessary data of

CyberMed’s routines (like long searches in the DS and
constant references between different DSs) can be fatal for
the system’s real-time feature.

This way, not only points and polygons of a 3D object
are necessary, but the system also needs values, such as
triangles’ neighbors, color of triangles and their normal
vectors, amongst others, for the execution of its routines.
These values can be calculated or obtained only once and are
stored in a DS.

So it is important that the DS gives a direct access to the
original data of the 3d objects and also the calculated data
related to these objects.

DATA STRUCTURE GENERATION

The use of a 3D object by the CyberMed is done by reading
from the source file of a model that contains the object
description. The object data is stored in a corner-table based
DS. The original data is used to calculate the other data
necessary for the system processing such as color of the
objects, normal vectors of vertexes and polygons, elasticity
constants of the vertexes’ bonds (edges of the triangle), the
mass of the points, and other constants.

The CyberMed DS is based on the corner-table DS with
a feel adjustments: data like coordinates and neighboring
triangles are accessed more directly in it’s own triangle
(different to a list of sequenced points), with out the need of
numeric indexes; the storage of more data is applied; and the
DS is referencing neighboring triangles, not opposite points,
by this the whole data of the neighboring triangle can be
accessed without the need of a linear search for it. These
changes are necessary to make faster accesses to information
and by doing so improving the performance of the routines
in CyberMed.

The source file that is being used is in the VRML 2.0
format. It presents the following geometric properties of the
model: color, points and polygons. Other data like normal
vectors and neighboring triangles are calculated when the
DS is being constructed. In all, the file contains two main
parts: a list of points and a list of polygons.

On the list of the points the x, y and z coordinates are
stored, the value of these coordinates are in floating point.
For the tetrahedron in Figure 1, this part is presented as:

point[
 x0 y0 z0,
 x1 y1 z1,
 x2 y2 z2,
 x3 y3 z3
]

The list of polygons stores the reference to the points in

the point’ s list and the construction orientation of each
polygon. The point’ s references follow the order of each
point in the point list and its value is in integer. The
construction orientation of the polygon can have two values,
either “1” , if the orientation is clockwise, or “-1” , if the
orientation is counter clockwise. For figure 1 this part is
presented as:

coordIndex[
 0 1 3 -1,
 1 2 3 -1,
 0 2 1 -1,
 0 3 2 -1
]

The first time the system is executed, the model file is
read and stored. After that this data is used to calculate the
neighboring triangles one in relation to each vertex of the
triangle. So, in total, it calculates three neighboring triangles
per triangle.

The DS stores a dynamic list of triangles and for each
triangle it stores: the coordinates of each vertex, it’ s
construction orientation, three pointers that references the
triangle’s neighbors, a pointer that references the next
triangle on the list and other physical data of the object that
will be used by the different routines. Figure 3 shows an
example of the DS for the figure 1. The reference to the
neighbor is stored on the same order as the point of the
triangle that’s opposite to it. By this and the fact that it’s on
the same structure as the rest of the object’ s data it is assured
that there will be faster searches made by the routines within
the structure.

The calculations for the determination of the
neighboring triangles is done by a linear search in the
polygon’s list, for each triangle three different pairs of
vertexes are selected and with them is made a search for
another triangle that has one of the pairs, the triangle that is
found is one of the neighboring triangles.

0

Beginning
Points

Construc tion
Orientation

Neighbors

Next

0 1 3 -1 1 3 2

1 2 3 -1 3 0 2

1 0 2 -1 3 1 0

3 2 0 -1 0 2 1

Other
Data

1

2

3

FIGURE. 3

DATA STRUCTURE OF THE OBJECT REPRESENTED IN FIGURE 1.

CONCLUSIONS

The generation of the DS was tested with three
graphical objects: a simple cube with 8 points and 12
triangular faces; a medium sized sphere with 114 points and
224 triangular faces; a model that represents the marrow
with 8036 points and 16072 triangular faces; and a model
that represents de iliac bone with 12070 points and 24164
triangular faces.

Table II shows a graph that compares the time needed to
calculate neighbors for each triangle of the four graphical

objects used. The hardware used for tests was a PC AMD64
3.2Mhz with 1.5Gb of RAM running Fedora Core 3 32 bits.

TABLE II
TIMING TESTS

Model
Number of
Vertexes

Number of
Triangles

Time of
Neighbor

Calculation
(in seconds)

Cube
Sphere
Bone Marrow
Iliac Bone

8
114
8036
12070

12
224

16072
24164

0,00
0,23

129,42
284,47

Figure 4 shows one of the models selected to test the

data structure. Figure 5 shows a bone marrow model of the
bone marrow presented inside a real iliac bone. The
integration of both models can be observed in Figure 6.
Because for each triangle there will be more data associated
to it than the ones on the source file, this model was chosen
because of its size to test the storage capacity of the DS. It’ s
important to verify this capacity because the CyberMed will
allows simultaneous visualization of more complex
graphical objects. At the same time, the system will support
multi-layer compositions (Figure 6), what means that will be
on DS for each layer.

FIGURE. 4

TEST OF THE DATA STRUCTURE USING AN ILIAC BONE MODEL. THE 3D

OBJECT HAS 12070 POINTS AND 24164 TRIANGULAR FACES. THE OBJECT IS

COLORED TO DISTINGUISH THE FACES OF THE SURFACE.

The calculations for finding the neighboring triangles
and the normal vectors for the polygons and vertexes are
costly. Since these calculations will only be done on the
loading phase of the model(s), this fact will only affect the
loading phase of the VR system. Also these calculations will
only be done when the model is loaded for the first time in
the system, because after that the data is saved on a file for
later use.

FIGURE. 5

THE BONE MARROW MODEL USED IN TESTS OF THE DATA STRUCTURE

GENERATION.

FIGURE. 6
BONE AND BONE MARROW MODELS VISUALIZED TOGHETER.

ACKNOWLEDGMENTS

This work was partially supported by CNPq (CT-INFO-
CNPq 506480/2004-6) and FINEP (ref. 1898/04).

REFERENCES

[1] Basdogan, C.; De, S.; Kim, J.; Muniyandi, M.; Kim, H., et al., “Haptic
Minimally Invasive Surgical Simulation and Training”, IEEE
Computer Graphics and Applications, Vol. 24, No. 2. March-April
2004.

[2] Machado, L.S.; Moraes, R.M. “Cenários 3D Interativos com Software
Livre”. Revista de Informática Teórica e Aplicada. Vol. 12, No. 2.
2005, pp. 91-112.

[3] Machado, L.S.; Cunha, I.; Campos, S.; Moraes, R., “CYBERMED:
Realidade Virtual para Ensino Médico”, IFMBE Proceedings. Vol. 5.
2004, pp. 573-576.

[4] Moraes, R.M.; Machado, L.S.; Souza, A.C.M., “VirtWall: A Concept
of Low-Cost Virtual Wall for Immersion in Virtual Reality” , Proc.
Simp. on VR. 2003, pp. 383-385.

[5] Netto, A.V.; Machado, L.S.; Oliveira, M.C.F., “Realidade Virtual -
Fundamentos e Aplicações”. Visual Books, 2002.

[6] Rosemblum, L., Burdea, G. and Tachi, “VR Reborn”, CG &
Applications, Vol. 18, No 6. 1998, pp. 21-23.

[7] Rossignac, J., Safanova, A., and Szymczak, A., “ 3D Compression
Made Simple: Edgebreaker on a Córner-Table”. Proceedings of the
Shape Modeling International Conference. May 2001.

[8] Vieira A.; Velho L.; Lopes H.; Tavares G. and Lewiner T. “Fast
Stellar Mesh Simplification”, Brazilian Symposium on Computer
Graphics and Image Processing. 2003, pp. 27-34.

